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Abstract

Trichogramma is a kind of egg parasitoid wasp that is widely used to control lepidopterous

pests. Temperature is one of the main factors that determines the various life activities of

this species, including development, reproduction and parasitism efficiency. Heat shock pro-

teins (HSPs) are highly conserved and ubiquitous proteins that are best known for their

responsiveness to temperature and other stresses. To explore the potential role of HSPs in

Trichogramma species, we obtained the full-length cDNAs of six HSP genes (Tchsp10,

Tchsp21.6, Tchsp60, Tchsp70, Tchsc70-3, and Tchsp90) from T. chilonis and analyzed

their expression patterns during development and exposure to temperature stress. The

deduced amino acid sequences of these HSP genes contained the typical signatures of

their corresponding protein family and showed high homology to their counterparts in other

species. The expression levels of Tchsp10, Tchsp21.6 and Tchsp60 decreased during

development. However, the expression of Tchsc70-3 increased from the pupal stage to the

adult stage. Tchsp70 and Tchsp90 exhibited the highest expression levels in the adult

stage. The expression of six Tchsps was dramatically upregulated after 1 h of exposure to

32 and 40˚C but did not significantly change after 1 h of exposure to 10 and 17˚C. This result

indicated that heat stress, rather than cold stress, induced the expression of HSP genes.

Furthermore, the expression of these genes was time dependent, and the expression of

each gene reached its peak after 1 h of heat exposure (40˚C). Tchsp10 and Tchsp70 exhib-

ited a low-intensity cold response after 4 and 8 h of exposure to 10˚C, respectively, but the

other genes did not respond to cold at any time points. These results suggested that HSPs

may play different roles in the development of this organism and in its response to tempera-

ture stress.
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Introduction

Wasps of the genus Trichogramma (Hymenoptera: Trichogrammatidae) are tiny egg parasit-

oids of numerous insect species that are distributed around the world [1–3]. These wasps are

easily mass reared and have a broad range of hosts [4]. Since 1975, several species of Tricho-
gramma have been commonly used as biological control agents for various pests in agricultural

and forest systems [5, 6]. Among these parasitoid wasps, T. chilonis is one of the most success-

ful species in controlling lepidopterous pests, including Chilo spp. (Lepidoptera: Pyralidae),

Helicoverpa armigera (Lepidoptera: Noctuidae) and Pectinophora gossypiella (Lepidoptera:

Gelechiidae) [2]. In China, T. chilonis is widely distributed and is employed in integrated pest

management for rice, cotton, sugarcane and other crops [7].

Temperature is a vital factor that determines the distribution and abundance of animals [8].

It is also crucial for the successful introduction of Trichogramma species because it influences

their development, survival, reproduction, and sex ratio, as well as their parasitism efficiency

[3, 9]. Previous studies have claimed that Trichogramma species can live under a wide range of

temperatures from 9 to 36˚C [10]. The temperature range of 25–30˚C is considered optimal

for rearing T. chilonis in the laboratory [11]. Temperatures beyond the optimal conditions

could cause detrimental effects on various biological aspects of the wasps. For instance, T. chi-
lonis and three other Trichogramma species cannot parasitize the eggs of Cnaphalocrocis medi-
nalis (Guene´e) (Lepidoptera: Pyralidae) at 36˚C [12]. The emergence and host parasitization

of T. chilonis are 98.0% and 95.6% at 28˚C but decrease to 33.7% and 60.1%, respectively, at

35˚C [9]. Moreover, a low temperature of 15˚C leads to long developmental periods for T. chi-
lonis (26.3 days) and Trichogrammatoidea bactrae (25.6 days) (Hymenoptera: Trichogramma-

tidae) [4]. Although detrimental consequences caused by temperature stress have been well

reported, little is known about the molecular response to temperature stress in Trichogramma.

Heat shock proteins (HSPs) are highly conserved and ubiquitous proteins that are best

known for their responsiveness to multiple stresses such as extreme temperatures, desiccation,

anoxia, hypertonic stress, ultraviolet radiation, heavy metals, ethanol, and other contaminants

[13, 14]. In general, HSPs act as molecular chaperones that promote correct refolding of pro-

teins and prevent the misfolding or aggregation of proteins [15]. According to their molecular

weight and homology, HSPs are classified into several families, including HSP100, HSP90,

HSP70, HSP60, HSP40 and small HSPs (sHSPs) [16]. To data, certain groups of HSP genes

(hsps) have been identified and cloned from various insects such as Spodoptera litura (Lepidop-

tera: Noctuidae), Thitarodes pui (Lepidoptera: Hepialidae), Leptinotarsa decemlineata (Coleop-

tera: Chrysomelidae) and C. suppressalis [17–20]. An increasing number of hsps have been

shown to respond to temperature stress [17, 21, 22]. In an endoparasitoid wasp, Pteromalus
puparum (Hymenoptera: Pteromalidae), six hsps are induced by 1 h of exposure to −3 and

36˚C, including hsp20, hsp40, hsp60, hsp70, hsc70, and hsp90 [23]. The expression patterns of

five hsps vary but are indeed induced by heat or cold stress in Cotesia chilonis (Hymenoptera:

Braconidae) [24]. In addition, hsps have also been reported to be involved in the developmen-

tal processes of endoparasitoid wasps such as Venturia canescens (Hymenoptera: Ichneumoni-

dae), Macrocentrus cingulum (Hymenoptera: Braconidae) and C. vestalis [25–27].

Trichogramma wasps are often released in the fields during pupal stage [5]. Various biologi-

cal parameters of the released parasitoids are influenced by ambient temperature [3, 9]. To

data, the molecular mechanism of thermal tolerance remains unclear. In present study, six

hsps of T. chilonis (Tchsp10, Tchsp21.6, Tchsp60, Tchsp70, Tchsc70-3, and Tchsp90) were cloned

and characterized, and their expression profiles during development were explored. In addi-

tion, individuals at the pupal stage were collected to explore the expression patterns of these

six hsps in response to various levels of temperature stress (10, 17, 32 and 40˚C for 1 h). The
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temporal expression patterns of six Tchsps were also investigated during cold (10˚C) and heat

(40˚C) exposure. To our knowledge, this is the first report on the isolation and analysis of hsps
from T. chilonis. Our results are expected to help elucidate the potential contribution of these

HSPs to thermal tolerance and development.

Materials and methods

Insects

Prepupae of T. chilonis (parasitized eggs) and eggs of Corcyra cephalonica (Stainton) (Lepidop-

tera: Pyralidae) were obtained from the Plant Protection Research Institute, Guangdong Acad-

emy of Agricultural Sciences, People’s Republic of China. T. chilonis cultures were maintained

on irradiated C. cephalonica eggs for several generations at 25 ± 1˚C with 75 ± 5% relative

humidity and a 14 L:10 D photoperiod.

Sampling at different developmental stages

The irradiated eggs of C. cephalonica were glued on 4 paper cards (2 × 1 cm) and exposed to

freshly emerged T. chilonis for 30 min. These egg cards were transferred to different glass cylin-

ders and maintained at 25 ± 1˚C with 75 ± 5% relative humidity and a 14 L:10 D photoperiod.

Parasitized eggs on different cards were dissected to collect the larvae, prepupae, pupae and

adults of T. chilonis. The developmental stages of T. chilonis were confirmed under a stereo-

scope as described in previous studies [28, 29]. Every 6 h, a small number of parasitized eggs

were dissected to determine the developmental stage of T. chilonis. At the larval stage of T. chi-
lonis, the colors of individuals and parasitized eggs were both white. Larvae with oval shapes

were collected. At the prepupal stage, the color of parasitized eggs was black, and pulm spots

were visible on the body. Prepupae were collected when pulm spots disappeared from the head

and tail. At the pupal stage, the color of parasitized eggs turned deep, red compound eyes

appeared on the body, and pulm spots disappeared. Pupae with small black spots on their bod-

ies were collected. The adults were collected once they emerged from the eggs. To collect corre-

sponding individuals, parasitized eggs were immediately placed on a filter-paper soaked with

Sample Protector for RNA/DNA (TaKaRa, Dalian, China) and dissected under a stereoscope.

The specimens were immediately transferred to TRIzol (Invitrogen, Darmstadt, Germany)

and stored in a -80˚C refrigerator. Fifty wasps from each developmental stage were collected.

The experiment was repeated three times.

Temperature exposure

Considering that T. chilonis wasps are often released as pupae inside the host eggs, these para-

sitized eggs were chosen for temperature exposure experiments. The parasitized eggs were

exposed to temperatures of 10, 17, 32 and 40˚C for 1 h, and parasitized eggs kept at 25˚C were

collected as controls. These parasitized eggs were then dissected to collect wasps under a ste-

reoscope. In addition, wasps were collected at different time points (1, 2, 4 and 8 h) during

cold (10˚C) and heat (40˚C) exposure. The sampling method was the same as described above.

Cloning the full-length cDNA of hsps
Total RNA from adults was isolated with a TRIzol Reagent Kit according to the supplier’s

instructions. Assessment of the quality and quantity of total RNA was performed by electro-

phoresis and with a NanoDrop 2000 (Thermo Fisher Scientific, Wilmington, DE, USA). First-

strand cDNA was generated with a PrimeScriptTM RT Reagent Kit (TaKaRa, Dalian, China).

Templates for 5’ and 3’ RACE were constructed using a SMARTTM RACE cDNA
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Amplification Kit (Clontech, California, USA). Primers (S1 Table) were designed based on the

nucleotide sequences from the transcriptome data of T. chilonis (SRA accession number:

SRP119024). PCR products were cloned and then sequenced by Sangon (Shanghai).

Bioinformatics analysis

Using the DNASTAR software package, full-length cDNAs of hsps were obtained based on the

sequenced fragments. The BLAST search was performed to find homologous sequences in

GenBank. Multiple sequence alignment and identity analysis were performed using DNA-

MAN software. The open reading frame (ORF) and deduced amino acid sequence of each hsp
were identified and obtained using ORF Finder (http://www.ncbi.nlm.nih.gov/gorf/gorf.html).

The predicted molecular weight and theoretical isoelectric point (pI) of the deduced proteins

were predicted with the ExPASy (http://www.expasy.org/). Domains were predicted by

SMART tool (http://smart.embl-heidelberg.de/). Phylogenetic analysis was performed using

MEGA software (version 6.0) with the 1000 bootstrap replicates. Five neighbor-joining (NJ)

phylogenetic trees were constructed using members of HSP10, sHSPs, HSP60, HSP70 and

HSP90 familiy.

Quantitative real-time PCR

Total RNA of the samples from each treatment was extracted and reverse transcribed as

described above. Primers were designed based on the conserved regions of the hsps, and glyc-

eraldehyde-3-phosphate dehydrogenase (gapdh) was used as the control (S1 Table). The real-

time PCR reaction was performed in a 10 μL reaction volume following the manufacturer’s

protocol for SYBR 1 Premix Ex Taq™ (TaKaRa, Dalian, China). The expression profiles of

hsps were determined on a Roche 480 Real-Time PCR System (Roche, Switzerland) under the

following conditions: 95˚C for 3 min, 40 cycles of 95˚C for 10 s, 60˚C for 20 s and 72˚C for 20

s. The melting curve analysis was applied to ensure the specificity of primers at the end of the

program. The relative abundance of each hsp was calculated according to the 2−ΔΔCt method

[30].

Statistics

The expression values of the hsps are presented as the means ± SEM. Statistical analysis was

performed by SPSS v.16.0 software (SPSS, Chicago, IL, USA) with one-way analysis of variance

(ANOVA) and Duncan’s post hoc tests.

Results

Characterization of hsp genes

Tchsp10.. The full-length cDNA of Tchsp10 was 705 bp, including an ORF of 315 bp, a 5’-

untranslated region (UTR) of 205 bp and a 3’-UTR of 185 bp (GenBank accession number

MH490973). The ORF of Tchsp10 encoded a polypeptide of 104 amino acids with a predicted

molecular weight of 11.26 kDa and a pI of 8.93. TcHSP10 showed topical Cpn10 superfamily

characteristics with a conserved domain (aa 9–102) and and a mobile loop (aa 25–38) (Fig 1).

Tchsp21.6.. The full-length cDNA of Tchsp21.6 was 2119 bp, including an ORF of 576 bp,

a 5’- UTR of 218 bp and a 3’-UTR of 1325 bp (GenBank accession number MH490974). The

ORF of Tchsp21.6 encoded a polypeptide of 191 amino acids with a predicted molecular weight

of 21.68 kDa and a pI of 5.6. TcHSP21.6 was a typical small HSP, containing a metazoan α-

crystalline domain (ACD) (Fig 2).
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Tchsp60. The full-length cDNA of Tchsp60 was 2222 bp, including an ORF of 1716 bp, a

5’-UTR of 197 bp and a 3’-UTR of 309 bp (GenBank accession number MH490975). The ORF

of Tchsp60 encoded a polypeptide of 571 amino acids with a predicted molecular weight of

60.48 kDa and a pI of 5.18. TcHSP60 contained a classical mitochondrial HSP60 signature

motif (AAVEEGIVPGGG), a C-terminal Gly-Gly-Met repeat (GGM repeat motif) and ATP/

ADP binding sites (Fig 3).

Two TcHSP70 genes. The full-length cDNA of Tchsp70 was 2573 bp, including an ORF

of 1992 bp, a 5’-UTR of 13 bp and a 3’-UTR of 568 bp (GenBank accession number

MH490976). The ORF of Tchsp70 encoded a polypeptide of 663 amino acids with a predicted

molecular weight of 73.26 kDa and a pI of 5.62.

The full-length cDNA of Tchsc70-3 was 2668 bp, including an ORF of 1992 bp, a 5’-UTR of

186 bp and a 3’-UTR of 490 bp (GenBank accession number MH490977). The ORF of

Tchsc70-3 encoded a polypeptide of 663 amino acids with a predicted molecular weight of

73.34 kDa and a pI of 5.12.

The two TcHSP70 sequences contained three conserved signatures, an ATP-GTP binding

site and a non-organellar consensus motif (Fig 4). In addition, the KDEL motif was identified

in the deduced amino acid sequence of Tchsc70-3. The EEVD motif was found at the C-termi-

nus of TcHSP70.

Tchsp90. The full-length cDNA of Tchsp90 was 2643 bp, including an ORF of 2181 bp, a

5’-UTR of 145 bp and a 3’-UTR of 317 bp (GenBank accession number MH490980). The ORF

of Tchsp90 encoded a polypeptide of 726 amino acids with a predicted molecular weight of

83.48 kDa and a pI of 4.88.

Five highly conserved signature sequences of the HSP90 family were found, including

NKEIFLRELISNSSDALDKIR (aa 41–61), LGTIAKSGT (aa 108–116), IGQFGVGFYSAYL-

VAD (aa 132–147), IKLYVRRVFI (aa 357–366) and GVVDSEDLPLNISRE (aa 383–397) (Fig

5). The MEEVD motif was identified at the C-terminus of the deduced amino acid sequence.

Phylogenetic analysis of TcHsps. Phylogenetic trees were constructed based on the

deduced amino acid sequences of Tchsps and their homologous sequences by the neighbor-

joining method. The results revealed that HSP10 sequences from T. chilonis and T. pretiosum

Fig 1. Nucleotide sequence and deduced amino acid sequence of Tchsp10. The initiation and stop codons are

marked with boxes. The conserved domain is shaded in light gray. The mobile loop is underlined.

https://doi.org/10.1371/journal.pone.0203904.g001

Fig 2. Nucleotide sequence and deduced amino acid sequence of Tchsp21.6. The initiation and stop codons are

marked with boxes. The α-crystallin domain (ACD) is shaded in light gray.

https://doi.org/10.1371/journal.pone.0203904.g002
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Fig 3. Nucleotide sequence and deduced amino acid sequence of Tchsp60. The initiation and stop codons are

marked with boxes. The conserved domain is shaded in light gray. The ATP binding sites are underlined. The GGM

repeat motif is marked with a double line. The classical mitochondrial HSP60 signature motif is shown in bold.

https://doi.org/10.1371/journal.pone.0203904.g003

Fig 4. Multiple amino acid sequence alignments of two genes in the HSP70 family. Three signature motifs of the

HSP70 family are shown in light gray. The non-organellar consensus motif is boxed, the localization motif is

underlined, and the ATP/GTP binding site is double underlined.

https://doi.org/10.1371/journal.pone.0203904.g004
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were clustered together into a single branch (Fig 6(A)). Two HSP60 sequences of endoparasi-

toid wasps (T. chilonis and P. puparum) were clustered within a branch (Fig 6(C)). A similar

result was also found in the phylogenetic tree constructed with HSP90 sequences (Fig 6(E)).

TcHSP21.6 showed a high similarity with HSP21.5 and HSP21.4 from other insects (Fig 6(B)).

These sHSPs were clustered together and were separated from HSP beta-1 sequences. The

sequences of the HSP70 family from insects presented two clusters, one with HSP70 sequences

and another with HSC70-3 sequences (Fig 6(D)). The two TcHSP70 sequences showed a close

relationship with their homologous sequences from the hymenopteran species.

Expression of Tchsps during development. Real-time PCR was used to measure the

expression levels of Tchsps during development. The expression level in the larval stage was

used as the control value. The developmental expression profiles of six Tchsps varied signifi-

cantly in T. chilonis (Tchsp10: F3, 8 = 304.50, p< 0.001; Tchsp21.6: F3, 8 = 98.80, p< 0.001;

Tchsp60: F3, 8 = 332.64, p< 0.001; Tchsp70: F3, 8 = 183.91, p< 0.001; Tchsc70-3: F3, 8 = 11.67,

p = 0.003; Tchsp90: F3, 8 = 115.27, p< 0.001). The expression of Tchsp10, Tchsp21.6 and

Tchsp60 decreased from the larval stage to the pupal stage and was maintained at a low level

during the pupal and adult stages (Fig 7). Similarly, Tchsc70-3 had the highest expression level

during the larval stage and the lowest level during the pupal stage, while it was upregulated

from the pupal stage to the adult stage. In contrast, the expression of Tchsp70 and Tchsp90
peaked in the adult stage, with 5.63- and 3.27-fold increases, respectively compared to the lev-

els in the larval stage.

Expression profiles of Tchsps at different temperatures. All six Tchsps showed the same

expression pattern after exposure to different temperatures (10, 17, 25, 32 and 40˚C) for 1 h (Fig

8). They were all significantly upregulated at high temperatures (32 and 40˚C) compared with

25˚C (Tchsp10: F4, 10 = 20.71, p< 0.001; Tchsp21.6: F4, 10 = 6.04, p = 0.01; Tchsp60: F4, 10 = 5.56,

p = 0.013; Tchsp70: F4, 10 = 64.07, p< 0.001; Tchsc70-3: F4, 10 = 24.07, p< 0.001; Tchsp90: F4, 10 =

22.91, p< 0.001). Although the expression of Tchsp90 at 32˚C was higher than the levels at 10, 17,

and 25˚C, there were no significant differences. The expression levels of Tchsp70, Tchsc70-3 and

Tchsp90 were significantly increased from 32 to 40˚C. Among these genes, Tchsp70 had the great-

est heat response, with a 7.41 -fold increase at 32˚C and a 13.74-fold increase at 40˚C. On the

Fig 5. Nucleotide sequence and deduced amino acid sequence of Tchsp90. The initiation and stop codons are

marked with boxes. Five signature motifs of the HSP90 family are shown in light gray. The localization motif is double

underlined.

https://doi.org/10.1371/journal.pone.0203904.g005
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other hand, the expression levels of six Tchsps slightly increased after exposure to 10 and 17˚C but

were not significantly different from the expression levels at 25˚C.

The temporal expression patterns of six Tchsps were also investigated during cold (10˚C)

and heat (40˚C) exposure. The results indicated that the expression levels of Tchsp10 and

Tchsp70 were significantly increased after 4 and 8 h of cold exposure (10˚C), respectively

(F4, 10 = 3.48, p� 0.05; F4, 10 = 3.69, p = 0.043). Although the expression levels of other Tchsps
were also slightly increased after cold exposure for different periods of time, they showed no

significant differences compared with the control group (Tchsp21.6: F4, 10 = 0.31, p = 0.87;

Tchsp60: F4, 10 = 0.49, p = 0.74; Tchsc70-3: F4, 10 = 1.37, p = 0.31; Tchsp90: F4, 10 = 1.20,

p = 0.37) (Fig 9). On the other hand, the six Tchsps were strongly expressed after 1 h of heat

exposure (40˚C) (Tchsp10: F4, 10 = 10.37, p = 0.001; Tchsp21.6: F4, 10 = 5.08, p = 0.017; Tchsp60:

Fig 6. Phylogenetic analysis of TcHSPs and other homologous sequences from insects. The Neighbor-Joining (NJ) trees are

constructed by using MEGA 6.0. The positions of HSPs of Trichogramma chilonis are marked with triangles. (A) HSP10, (B) small HSP,

(C) HSP60, (D) HSP70 and HSC70-3, and (E) HSP90.

https://doi.org/10.1371/journal.pone.0203904.g006
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F4, 10 = 11.19, p = 0.001; Tchsp70: F4, 10 = 9.98, p = 0.002; Tchsc70-3: F4, 10 = 23.38, p< 0.001;

Tchsp90: F4, 10 = 12.25, p = 0.001). The expression of Tchsp10, Tchsp60, Tchsp70, Tchsp70-3
and Tchsp90 decreased from 1 h to 8 h. However, Tchsp21.6 exhibited the highest levels at 1 h

and 8 h.

Fig 7. Relative expression levels of Tchsps during development. Data are presented as the means ± SE (n = 3). Different lowercase

letters indicate significant differences. (A) Tchsp10, (B) Tchsp21.6, (C) Tchsp60, (D) Tchsp70, (E) Tchsc70-3 and (F) Tchsp90.

https://doi.org/10.1371/journal.pone.0203904.g007
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Discussion

In this study, full-length cDNAs of six HSP genes were obtained from T. chilonis, including

Tchsp10, Tchsp21.6, Tchsp60, Tchsp70, Tchsc70-3 and Tchsp90. TcHSP10 contained a mobile

Fig 8. Relative expression levels of Tchsps after 1 h of exposure to different temperatures. Data are presented as the means ± SE

(n = 3). Different lowercase letters indicate significant differences. (A) Tchsp10, (B) Tchsp21.6, (C) Tchsp60, (D) Tchsp70, (E) Tchsc70-
3 and (F) Tchsp90.

https://doi.org/10.1371/journal.pone.0203904.g008
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Fig 9. Temporal expression patterns of Tchsps during cold (10˚C) and heat (40˚C) exposure. Data are presented as the

means ± SE (n = 3). Different lowercase letters indicate significant differences. (A) Tchsp10, (B) Tchsp21.6, (C) Tchsp60, (D) Tchsp70,

(E) Tchsc70-3 and (F) Tchsp90.

https://doi.org/10.1371/journal.pone.0203904.g009
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loop, which is consistent with the characteristic of other HSP10 sequences described in many

studies [31–33]. Through the mobile loop, HSP10 interacts with the HSP60, which helps the

folding of protein [34, 35]. Tchsp21.6 encoded a polypeptide of 191 amino acids with a pre-

dicted molecular weight of 21.68 kDa. The deduced amino acid sequence of Tchsp21.6 con-

tained an α-crystallin domain (ACD), which is a characteristic feature of the sHSPs family [36,

37]. This family is composed of many members containing variable N- and C-terminal exten-

sions [32, 38]. TcHSP60 belongs to the mitochondrial HSP60 family, containing a conserved

signature motif (AAVEEGIVPGGG) and a GGM motif [23, 39]. The GGM motif at the C-ter-

minus has been suggested to provide a suitable physical environment for protein folding [40].

The ATP/ADP binding sites were found in TcHSP60, which have also been identified in

HSP60 sequences from Rhopalosiphum padi (L.) (Homoptera: Aphididae) and Lucilia cuprina
(Diptera: Calliphoridae) [39, 41]. The highly conserved motif among HSP60 sequences may

indicate that a similar mechanism of coupling ATP hydrolysis to the substrate-refolding pro-

cess exists [14, 39, 42]. The two TcHSP70 sequences had three conserved HSP70 family signa-

tures and a non-organellar consensus motif, in accordance with the structures of the HSP70

sequences described in Nilaparvata lugens (Homoptera: Delphacidae), Sitodiplosis mosellana
(Diptera: Cecidomyiidae) and Habrobracon hebetor (Hymenoptera: Braconidae) [43–45]. The

two TcHSP70 sequences showed high similarity with their homologous sequences from other

insects. These results indicated that the members of HSP70 family are highly conserved [46].

It has been well reported that HSPs are involved in the development of insects [47, 48].

However, the expression patterns of hsps during development vary in insects [49, 50]. For

example, the expression of hsp60 increases from the larval stage to the adult stage in Liriomyza
sativa (Diptera: Agromyzidae), while it decreases from nymph to adult in R. padi [39, 47]. In

this study, Tchsp10 and Tchsp60 levels decreased during development, which is consistent with

the findings of report on Galeruca daurica (Coleoptera: Chrysomelidae) [50]. Moreover,

Tchsp21.6 showed the same expression pattern as Tchsp10 and Tchsp60. The high expression of

three Tchsps in the larval stage indicated that these genes may be related to larval development.

In T. chilonis, Tchsp70 and Tchsp90 levels peaked at the adult stage, and Tchsc70-3 expression

was upregulated from the pupal stage to the adult stage. It is different from the findings in S.

exigua and Frankliniella occidentalis (Thysanoptera: Thripidae) [48, 49]. In contrast, in the

endoparasitoid wasp M. cingulum, hsp70 and hsp90 are highly expressed in the pupal and adult

stages [26]. The high expression of hsp70 begins at the third-instar larval stage, when C. vestalis
comes out of the host [27]. As an egg endoparasitoid, adults of T. chilonis emerge from host,

thus facing very different environmental stresses. These HSP genes, i.e., Tchsp70, Tchsp90 and

Tchsc70-3, might be needed to overcome these challenges.

HSPs also play important roles in the response to temperature stress [51]. As described in

the introduction, HSPs are molecular chaperones that help to prevent potential damage to cel-

lular and molecular structures under temperature and other stresses [15, 52]. Altered expres-

sion patterns of hsps have been widely reported under temperature stresses, although these

responses seem to be species-specific among insects [39, 43]. In T. pui, the expression of hsp90,

rather than hsp70, changes in response to temperature [22]. However, hsp90 and hsp70 in

Empoasca onukii (Hemiptera: Cicadellidae) are both highly expressed under cold and heat

treatments [53]. Cchsp60 in C. chilonis responds to cold stress but is insensitive to heat stress

[24]. In contrast, the highest expression level of hsp60 in P. puparum appears at 36˚C [23]. In

this study, Tchsps were sensitive to high temperatures (32 and 40˚C), which is consistent with

the expression patterns of hsps observed in other species [23, 48, 50]. The expression of

Tchsp10, Tchsp21.6 and Tchsp60 showed the same expression pattern in response to high tem-

peratures, each being significantly upregulated under high temperatures but with no signifi-

cant differences at 32 and 40˚C. The upregulation of hsp10 and hsp60 has also been reported in
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Apostichopus japonicus (Echinodermata: Holothuroidea) and G. daurica [31, 50]. HSP10 is

considered the co-chaperone of HSP60 and interacts with HSP60 in the same heat shock path-

way [33, 54]. TcHSP21.6 belongs to the sHSPs family and showed high similarity with

HSP21.5 and HSP21.4, which have been proven to respond to heat stress in E. pela female

adults and in B. mori [55, 56]. Tchsp70 exhibited the highest expression at 40˚C. TcHSC70-3 is

a constitutively expressed protein that is also induced by heat. These results agreed with the

reports that the HSP70 family includes the major heat shock proteins induced by thermal

stresses [24, 26, 48]. Tchsp90 exhibited the same expression pattern as the two TcHSP70 genes,

being significantly upregulated from 32 to 40˚C. Similar response patterns have been reported

in E. onukii, S. exigua and two Liriomyza species [21, 48, 53]. The upregulation of Tchsps
expression in T. chilonis may contribute to the improvement of thermal tolerance. Some

reports have documented that pupae of T. chilonis can endure a high temperature of 40˚C [57,

58]. On the other hand, the heat-responsive expression of Tchsps also implies that the expres-

sion of Tchsps could be a potential indicator of the heat stress response [8, 16]. Further study is

needed to support this speculation. Cold treatments (10 and 17˚C) for 1 h led to a slight, but

not significant, increase in the expression of all Tchsps, indicating that Tchsps are insensitive to

low temperatures. In different insects, the expression patterns of these genes vary under cold

exposure. For instance, hsp60 cannot be induced by cold in two Liriomyza species but could be

upregulated in response to low temperature in C. chilonis [21, 24]. The expression of hsp70
decreases in response to cold shock in N. lugens while it increases in E. onukii [43, 53]. Some

reports have indicated that the recovery from cold, rather than the direct cold stress, triggers

the high expression of HSP genes [49, 59].

Under the 40˚C treatment, the expression of all Tchsps exhibited a time-dependent response.

Except for the expression level of Tchsp21.6 at 8 h, expression levels of these genes significantly

increased after 1 h of exposure to 40˚C and dramatically decreased at subsequent time points.

This result indicated that the induction of hsps may be rapid and transitory. This phenomenon

has also been reported in numerous studies [21, 31, 44]. Many studies have attributed the decrease

in hsp expression to the energy balance and metabolic disorder [50]. In addition, previous studies

have speculated that the synthesis of HSPs requires excess energy consumption, imposing stresses

on various metabolic activities [60, 61]. The activity of enzymes is restricted under long-term heat

exposure, which may also result in the decrease of hsp expression [62]. Under the 10˚C treatment,

the expression of Tchsp21.6, Tchsp60, Tchsc70-3 and Tchsp90 did not dramatically change at any

time points. Tchsp10 and Tchsp70 exhibited a low-intensity cold response at 4 and 8 h. This result

suggested that Tchsps have low or no sensitivity to cold temperatures.

Conclusions

In summary, six Tchsps were cloned and characterized from T. chilonis, namely, Tchsp10,

Tchsp21.6, Tchsp60, Tchsp70, Tchsc70-3 and Tchsp90. These Tchsps exhibited different expres-

sion profiles at different developmental stages, suggesting they may be involved in the develop-

ment of T. chilonis. In pupae of T. chilonis, the expression profiles of these genes could be

induced by heat shocks (32 and 40˚C for 1 h) but did not change in response to cold shocks

(10 and 17˚C for 1 h). In addition, their expression levels showed time-dependent responses to

heat exposure. Tchsp10 and Tchsp70 exhibited a low-intensity cold response at 4 and 8 h. How-

ever, Tchsp21.6, Tchsp60, Tchsc70-3 and Tchsp90 did not respond to cold exposure. Due to the

difficultly of sampling caused by the tiny size and parasitic characteristics of T. chilonis, our

study initially explored the expression patterns of hsps during development and temperature

stresses. Our study may aid in a better understanding of the roles of hsps at different develop-

ment stages and in response to temperature stresses.
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